

Sugarbeet Disease Management

Ashok K. Chanda

Associate Professor & Extension Sugarbeet Pathologist

College of Food, Agricultural and Natural Resources Sciences Dept. of Plant Pathology, University of Minnesota, St. Paul, MN Northwest Research & Outreach Center, Crookston, MN achanda@umn.edu 218-281-8625

2025 ACSC Grower Seminar

MAKING A DIFFERENCE IN MINNESOTA: ENVIRONMENT + FOOD & AGRICULTURE + COMMUNITIES + FAMILIES + YOUTH

Importance of Correct Diagnosis

Aphanomyces Rhizoctonia

© 2023 Regents of the University of Minnesota. All rights

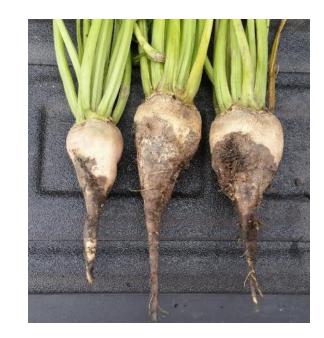
Importance of Correct Diagnosis

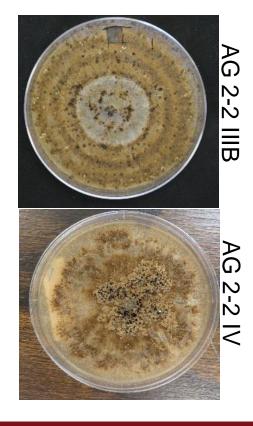
Rhizoctonia + Aphanomyces

© 2023 Regents of the University of Minnesota. All rights

Rhizoctonia Damping-off

Rhizoctonia Crown Rot

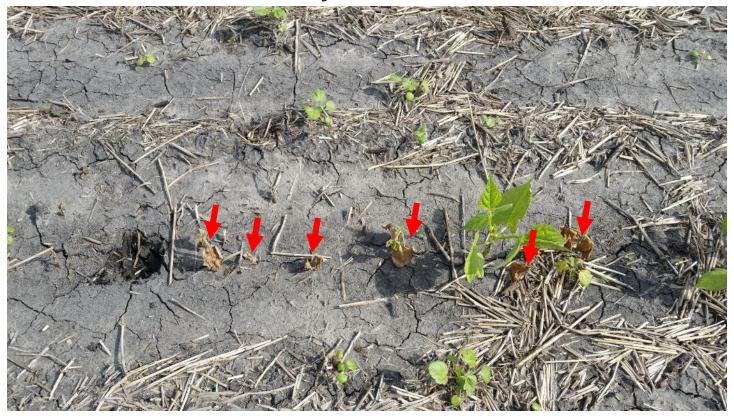




Rhizoctonia Root Rot

Key points about Rhizoctonia

- Rhizoctonia solani- AG 2-2 (IIIB & IV), AG 4 groups
- Wide host range- Sugarbeet, soybean, edible beans, corn, including weeds



Soybeans

Navy beans

How to manage in Rotation Crops?

- Seed treatments
 - Fluxapyroxad, Sedaxane, Rizolex
- In-furrow application
 - Azoxystrobin, Pyraclostrobin
- POST application
 - Azoxystrobin, Pyraclostrobin

Dean Malvick

dmalvick@umn.edu +1 612 625 5282

P622-2

2025

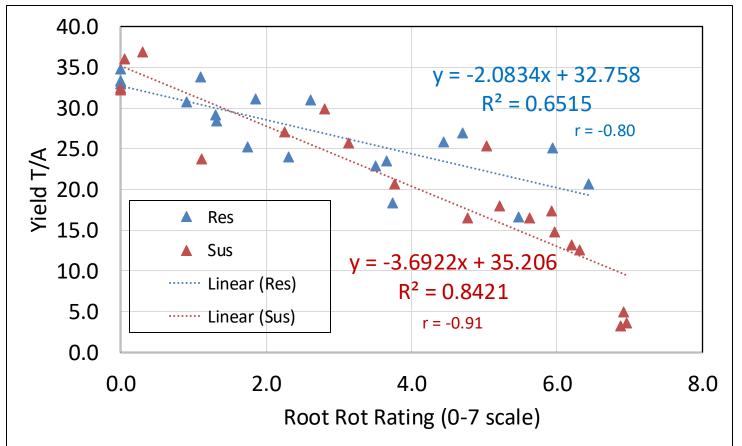
North Dakota **Field Crop**

Plant Disease Management Guide

Andrew Friskon, Extension Plant Pathologie Samuel G. Markell, Extension Plant Pathologis Eric Branch, Extension Pathologist Wade Webster, Extension Pathologis NDSU Department of Plant Pathology

Julie S. Pasche Associate Professor and Neil C. Gudmestad Endowed Chair of Potato Pathology Professor and Potato and Sugarbeet Pathologis

Please do not use beyond 12/31/202



Key points about Rhizoctonia

- Rhizoctonia solani- AG 2-2 (IIIB & IV), AG 4 groups
- Wide host range- Sugarbeet, soybean, edible beans, corn, including weeds
- Survival: 2-3 years in soil as dormant sclerotia
- How deep in the soil? 4 (common) to 6 inches
- Distribution in a field—entire field vs patchy
- Cultivation \rightarrow soil in the crown \rightarrow crown rot
- Overall goal \rightarrow to reduce the inoculum

Resistant Variety Matters!

Seed Treatments

- SDHI class of fungicides (<u>S</u>uccinate <u>D</u>e<u>Hydrogenase</u> <u>Inhibitor</u>, FRAC group 7)
- Single site of action Inhibit fungal respiration

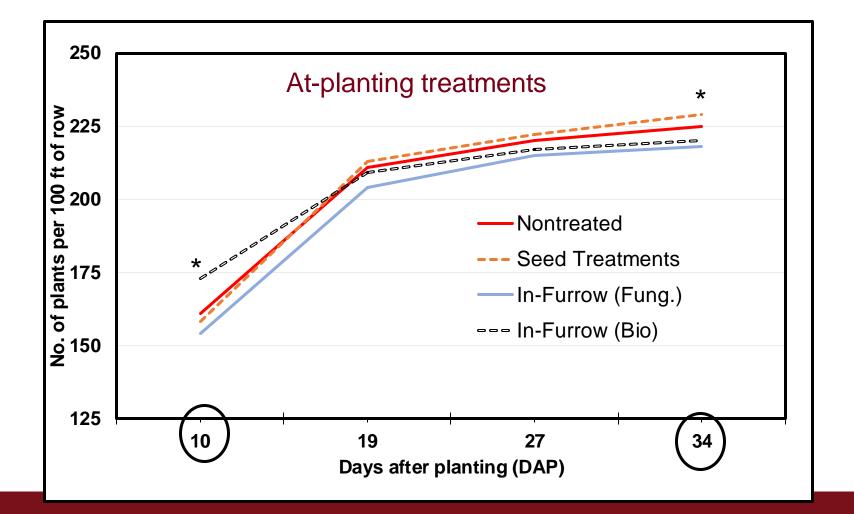
In-furrow Fungicides

- Do a jar test for compatibility for mixing
- Agitation in the tank is important to avoid nozzle clogging

My Trials:

- Fungicide in 6 gal. water applied via drip tube (2024)
- Fungicide in 3 gal. water + 10-34-0 @ 3 gal. applied via drip tube (past years)

In-furrow Fungicides (rates per acre)


Conventional

- Quadris 9.5 fl oz (Qol)
- AZteroid 5.7 fl oz (Qol)
- Elatus 7.1 fl oz (Qol + SDHI)
- Headline 9 fl oz (Qol)
- Proline 5.7 fl oz (DMI)
- Propulse 13.6 fl oz (DMI + SDHI)

Biologicals

- Zironar: Bacillus licheniformis FMCH001 + B. subtilis FMCH002
- Bexfond: *B. amyloliquefaciens* subsp. *plantarum* FZB42
- Serenade ASO: *B. subtilis* QST713

Root rot rating scale 0-10

0 1 2 3 4 5 6 7 8 9 10 1 = 1 - 10% rot, 10 = 91 - 100% rot

At-planting treatments

Application Type	Root Rot Severity (%)	Sucrose (%)	Recoverable sucrose (Ibs/ton)	Root yield (tons/A)	Recoverable sucrose yield (lbs/A)
Nontreated	3.7 ab	15.0 ab	300 ab	33.1	9954.5
Seed treatment	2.4 ab	14.7 a	294 a	32.7	9610.9
IF_Fungicides	1.7 a	15.0 ab	300 ab	31.6	9472.6
IF_Biologicals	4.2 b	15.2 b	304 b	31.1	9466.8
<i>p</i> -value	0.0227	0.0684	0.0684	0.2030	0.6510

Postemergence Fungicides (rates per acre)

- Quadris 10 & 14.5 fl oz (Qol)
- AZteroid 9.2 fl oz (Qol)
- AZterknot 16.6 fl oz (Qol + Knotweed extract)
- Elatus 7.1 fl oz (Qol + SDHI)
- Proline 5.7 fl oz. (DMI)
- Excalia <u>0.64 fl oz (band), 2.0 fl oz (broadcast)</u> (SDHI)

Recommended Timing: 4-8 leaf stage

Postemergence Fungicides

Treatment Type	Harvested Roots	Plant Loss (%)	Root Rot Severity (%)	Root Rot Incidence (%)	Sugar (%)	SLM (%)	Root Yield (tons/A)	RSA (Ibs/A)	
Nontreated Control	172	24.7	16.7 b	37.5	16.13	1.88	29.6	8432	
Band vs B	Band vs Broadcast Contrast								
7- Band	202	9.6	0.2	1.6	16.55	1.80	33.1	9777	
Broadcast	197	11.1	1.0	3.8	16.43	1.83	32.9	9612	
P- value	0.3041	0.4142	0.2704	0.0670	0.2560	0.2237	0.8125	0.5013	

Gain of 1180- 1345 lbs RSA over nontreated control Band: + \$350 over nontreated control Broadcast: + \$293 nontreated control

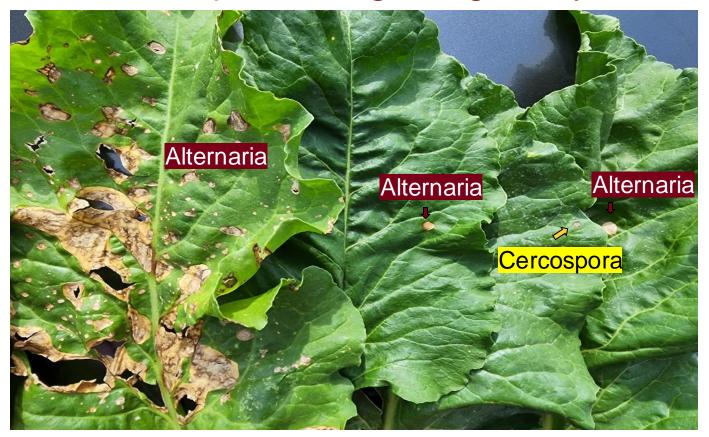
Fungicides for Rhizoctonia - MoA

Seed Treatment	In-Furrow		POST		
Kabina	Headline		Quadris		
Systiva	Quadris		Elatus		
Vibrance	Elatus		AZterknot		
Zeltera	AZteroid		Excalia		
	Proline		Topguard EQ		
	Propulse		Proline		
			Propulse		
			Priaxor		

Mode of Action SDHI

Qol

DMI


Strategies for full-season Rhizoctonia management

Varietal Selection

- Resistant variety can make a difference under severe disease pressure
- Severe disease pressure can overwhelm a susceptible variety
- Seed treatment
 - Provide excellent early-season protection (Kabina, Systiva, Vibrance, Zeltera, Metlock suite + Kabina, alone or in combination)
- In-furrow fungicide application
 - Early to mid-season protection
 - Some stand loss under dry and/or cool conditions, additional injury with starter fertilizers
- Postemergence fungicide application
 - 4- to 8-leaf stage window for application (susceptibility = earlier application)
 - Band and Broadcast applications work well
- Best Management Practices
 - Seed treatment + POST Most fields
 - Seed treatment + in-furrow + POST For fields with severe disease history

Leaf spots are getting tricky!



Cercospora Leaf Spot (CLS)

- Cercospora beticola
- Agronomic practices
 - Crop rotation
 - Tillage (residue incorporation)
 - Weed control

Cercospora Leaf Spot (CLS)

- Cercospora beticola
- Agronomic practices
 - Crop rotation
 - Tillage (residue incorporation)
 - Weed control
- Fungicides
 - Timely application
 - Systemic & contact
 - Rotate with different MoA
- Tolerant varieties

Available fungicides

Systemic

- DMI or Triazoles
 - InspireXT
 - Provysol
 - Proline
 - Domark, Minerva
 - Topguard

Systemic

- Benzimidazole EBDC
 - Topsin
- Strobilurins
 - Priaxor
 - Headline
 - Veltyma

- Mazate Pro-Stick
- Tin

Contact

- Copper
 - Badge
 - Kocide

Listing a few examples, it's not an endorsement of products listed here

Susceptible Variety (4.9 rating) - Untreated

Management of CLS – Susceptible Variety (4.9 rating)

App 1 (3-Jul)	App 2 (15-Jul)	App 3 (29-Jul)	App 4 (12-Aug)	App 5 (25-Aug)	Final CLS Rating (0-10)	RSA (Ibs/A)	Gross Revenue/A (\$)	
Inspire XT + Mancozeb	Mancozeb	Tin + Topsin	(Proline + NIS) + Mancozeb	Tin + Priaxor	6.1 a	8868 b	\$1721.9	+\$783
	No	ntreated Co	ontrol		9.9 d	6209 a	\$938.7	
		P- value			<0.0001	<0.0001		

MoAs: DMI EBDC Tin Topsin QoI+SDHI

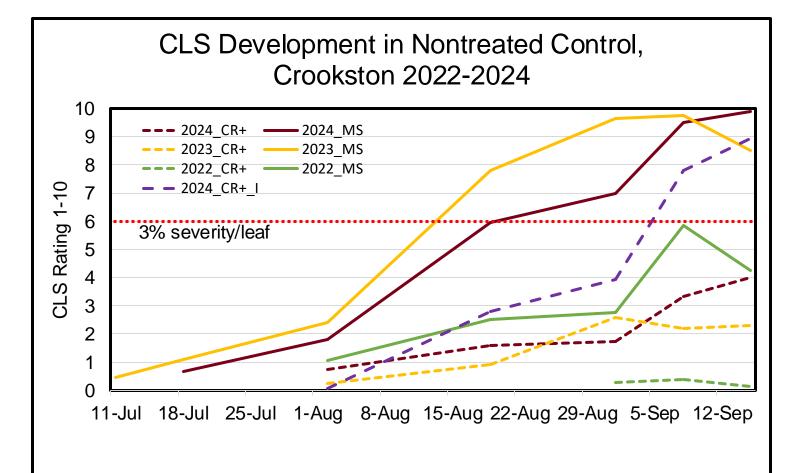
Gain of 2659 lbs RSA over nontreated control

CR+ Variety (2.1 rating) - Untreated

© 2023 Regents of the University of Minnesota. All rights

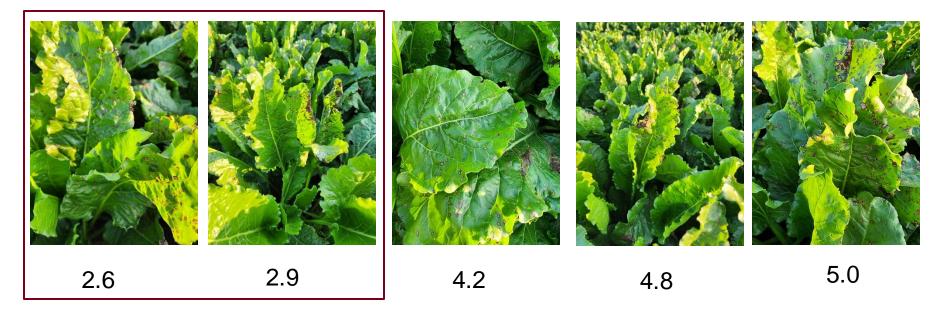
CR+ Variety (2.1 rating) – 4 spray program

© 2023 Regents of the University of Minnesota. All rights


Management of CLS – CR+ Variety (2.1 rating)

App 2 (15-Jul)	App 3 (29-Jul)	App 4 (12-Aug)	App 5 (25-Aug)	Final CLS Rating (0-10)	RSA (Ibs/A)	Gross Revenue/A (\$)	
Inspire XT + Mancozeb	Tin + Topsin	(Proline + NIS) + Mancozeb	Tin + Priaxor	1.4 ab	8573	\$1780.5	+\$82
	Nontreate	ed Control		4.0 e	8022	\$1698.1	
	<i>P</i> - v	alue		<0.0001	0.9673		

MoAs: DMI EBDC Tin Topsin QoI+SDHI


Gain of 551 lbs RSA over nontreated control

CR+ is under increased pressure from Cercospora ACSC CLS Nursery, Non-inoculated, Nontreated (2024)

Summary – Cercospora Leaf Spot Management

• Timely fungicide application is key

- Maintain 10-14 days spray intervals (shorten the interval based on rain events for contact fungicides)
- Critical when the DIV's are favorable for CLS development, early is on-time for CLS

• Rotate Fungicides with different Modes of Action (MoA)

- Fungicide resistance is prevalent in most growing regions
- Tank-mixing of fungicides: Mix single site-of-action fungicides (DMIs, QoIs, and MBCs etc.) with multi site-of-action fungicides (Tin, EBDC, Copper etc.)

CR+ varieties are tolerant to Cercospora but not immune

- C. beticola population is quickly adapting \rightarrow CLS is showing up earlier in the season
- CLS severity is increasing every year in the Northern Red River Valley
- Standard fungicide program with 10-14 days interval maybe the goal

2022 Leaf Samples Diagnosis

CLS Positive for Alternaria & Stemphylium

2022 - 2024 Leaf Samples Diagnosis

Year	No. of Samples	Cercospora	Alternaria	Stemphylium
2022	17	3 (12%)	10 (59%)	6 (35%)
2023	6	6 (100%)	2 (33%)	1 (17%)
2024	61	51 (84%)	46 (75%)	22 (36%)

Samples submitted to SBPP Diagnostic lab. Most agriculturist are comfortable identifying CLS, these numbers are not representative of MN and ND growing regions

Fields can have multiple pathogens present, and percentages will be greater than 100%

2024 Alternaria Leaf Spot (ALS)

A. alternata

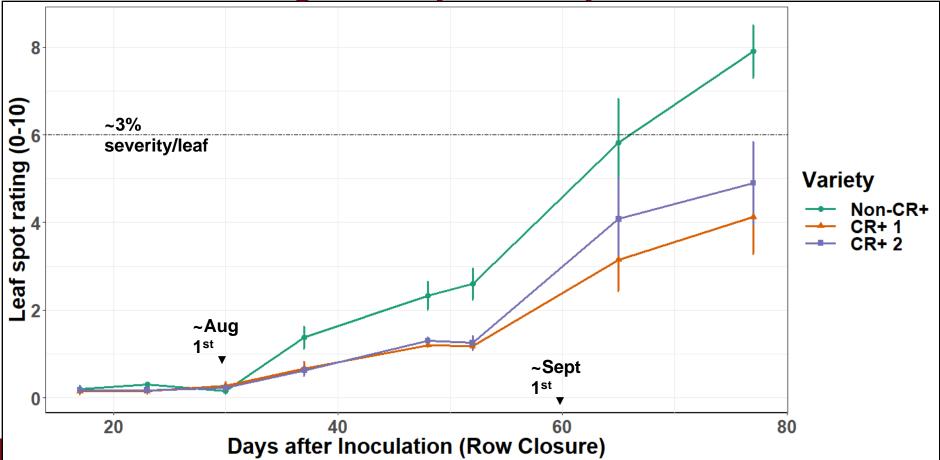
Alternaria

Alternaria spp. became a more serious issue in Michigan since 2015

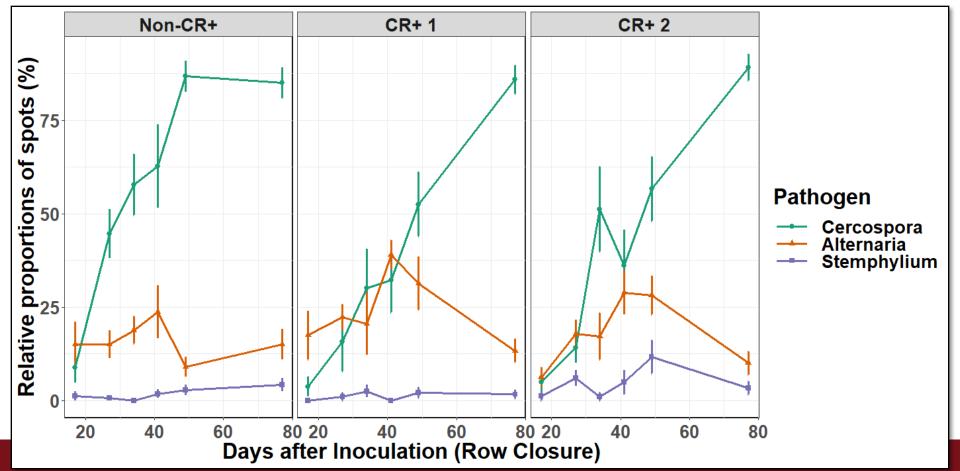
- Other hosts Edible beans, potatoes
- Strong saprophyte
- Drought stress and virus yellowing
- DMI (Tetraconazole) resistance

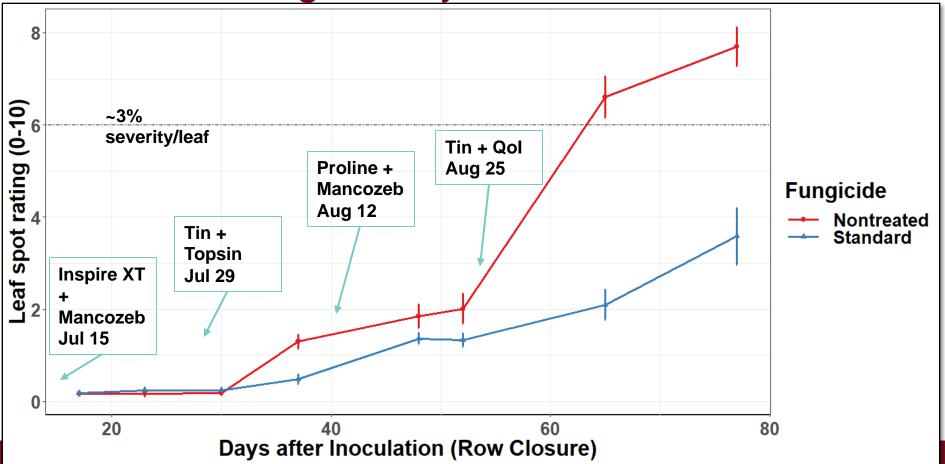
Stemphylium

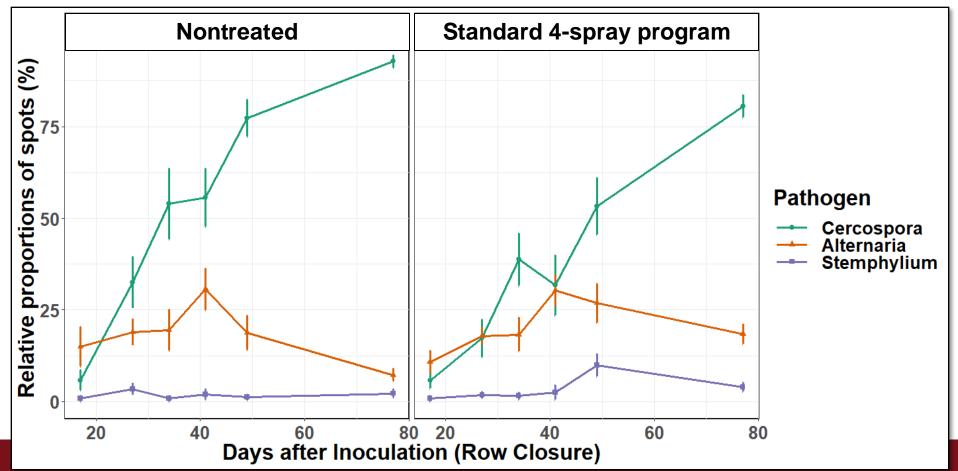
- S. beticola, highly virulent Netherlands, 2007
- S. vesicarium mild symptoms Michigan (2019), Minnesota and North Dakota 2021, 2022, and 2024
- MN and ND, always present along with Alternaria at a very low frequency
- Other hosts- Potato, Spinach, Table beets

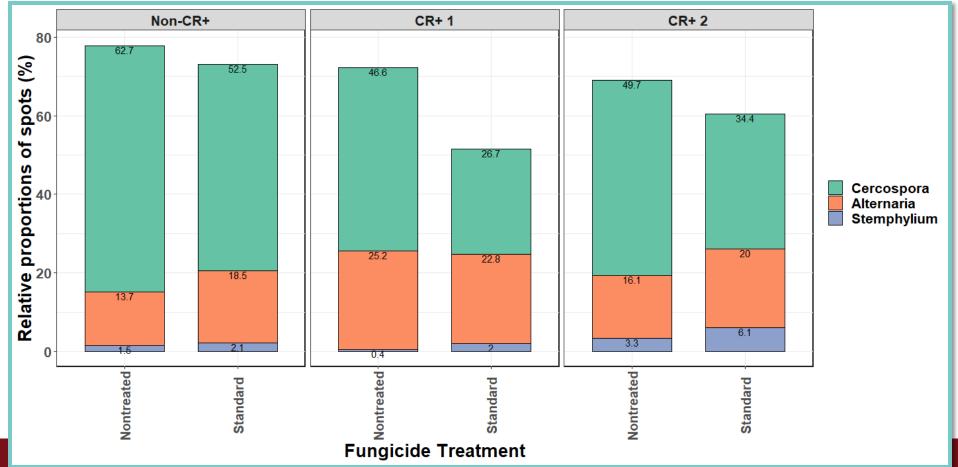


2024 Field Trial


- Are CR+ varieties more susceptible to ALS and SLS than non-CR+ varieties?
- Does a standard CLS fungicide program control ALS and SLS?
- Artificially Inoculated with Alternaria and Stemphylium


Disease Progress by Variety


Proportion of Spots over Time: Varieties


Disease Progress by Treatment

Proportion of Spots over Time: Treatments

Proportion of Spots among Treatments

Summary – Emerging Leaf Diseases

- CR+ varieties had lower leaf spot severity
- Standard CLS fungicide program significantly reduced leas spot severity in all varieties with CLS dominating by the end of the season.
- Proportion of ALS and SLS were similar in all varieties
- SLS remained low throughout the season
- ALS was moderate and prevalent during mid-season
- Need to screen Alternaria and Stemphylium for fungicide sensitivity
- Need to evaluate efficacy of individual fungicides for ALS and SLS in the field

Acknowledgements

- Sugarbeet Research and Education Board of Minnesota and North Dakota
- USDA-NIFA for partial support of MAES
- American Crystal Sugar Company
- Scott Pahl, Germains Seed Technology
- Seed, chemical, and allied industries
- American Crystal Sugar Company quality labs East Grand Forks and Moorhead
- U of M, NWROC facilities
- NWROC core research support team

achanda@umn.edu 218-281-8625

✗ @BeetPath

Sugarbeet Pathology Team

Thank You!

Questions?

© 2023 Regents of the University of Minnesota. All right The University of Minnesota is an equal opportunity edu

MAKING A DIFFERENCE IN MINNESOTA: ENVIRONMENT + FOOD & AGRICULTURE + COMMUNITIES + FAMILIES + YOUTH